Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572896

RESUMO

The search for novel anti-cancer compounds which can circumvent chemotherapeutic drug resistance and limit systemic toxicity remains a priority. 2-Ethyl-3-O-sulphamoyl-estra-1,3,5(10)15-tetraene-3-ol-17one (ESE-15-one) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16) are sulphamoylated 2-methoxyestradiol (2-ME) analogues designed by our research team. Although their cytotoxicity has been demonstrated in vitro, the temporal and mechanistic responses of the initiated intracellular events are yet to be determined. In order to do so, assays investigating the compounds' effects on microtubules, cell cycle progression, signalling cascades, autophagy and apoptosis were conducted using HeLa cervical- and MDA-MB-231 metastatic breast cancer cells. Both compounds reversibly disrupted microtubule dynamics as an early event by binding to the microtubule colchicine site, which blocked progression through the cell cycle at the G1/S- and G2/M transitions. This was supported by increased pRB and p27Kip1 phosphorylation. Induction of apoptosis with time-dependent signalling involving the p-JNK, Erk1/2 and Akt/mTOR pathways and loss of mitochondrial membrane potential was demonstrated. Inhibition of autophagy attenuated the apoptotic response. In conclusion, the 2-ME analogues induced a time-dependent cross-talk between cell cycle checkpoints, apoptotic signalling and autophagic processes, with an increased reactive oxygen species formation and perturbated microtubule functioning appearing to connect the processes. Subtle differences in the responses were observed between the two compounds and the different cell lines.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Estrona/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/genética , Autofagia/genética , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Estrenos/farmacologia , Estrona/análogos & derivados , Estrona/química , Feminino , Células HeLa , Humanos , Microtúbulos/química , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Neoplasias do Colo do Útero/patologia
2.
Cancers (Basel) ; 12(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781579

RESUMO

Paclitaxel is a microtubule stabilizing agent and a successful drug for cancer chemotherapy inducing, however, adverse effects. To reduce the effective dose of paclitaxel, we searched for pharmaceutics which could potentiate its therapeutic effect. We screened a chemical library and selected Carba1, a carbazole, which exerts synergistic cytotoxic effects on tumor cells grown in vitro, when co-administrated with a low dose of paclitaxel. Carba1 targets the colchicine binding-site of tubulin and is a microtubule-destabilizing agent. Catastrophe induction by Carba1 promotes paclitaxel binding to microtubule ends, providing a mechanistic explanation of the observed synergy. The synergistic effect of Carba1 with paclitaxel on tumor cell viability was also observed in vivo in xenografted mice. Thus, a new mechanism favoring paclitaxel binding to dynamic microtubules can be transposed to in vivo mouse cancer treatments, paving the way for new therapeutic strategies combining low doses of microtubule targeting agents with opposite mechanisms of action.

3.
Med Sci (Paris) ; 34(12): 1047-1055, 2018 Dec.
Artigo em Francês | MEDLINE | ID: mdl-30623774

RESUMO

Microtubules are cytoskeletal fibers formed by the assembly of α- and ß-tubulin heterodimers. They contribute to cell morphology, mobility and polarity, as well as to cellular transport processes and cell division. The microtubular network constantly adapts to cellular needs and may be composed of very dynamic or more stable microtubules. To regulate their diverse functions in a spatio-temporal manner, microtubules are subjected to numerous reversible post-translational modifications, which generate the "tubulin code". This review focuses on two modifications characteristic of stable microtubules - acetylation and detyrosination of α-tubulin - and their deregulation in certain pathologies.


Assuntos
Acetiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Acetilação , Animais , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...